DataScience 学习笔记
Table of Contents
台湾国立大学 MLDS 笔记
- NON-Parametric methods
- lec-01 Regression case study
- lec-02 where dose error come from
- lec-03 Gradient descent
- lec-04 Classification
- lec-09 Recipe of Deep Learning
- lec-10 CNN
- lec-11 Why Deep
- lec-12 Semi-supervised Learning
- lec-13 Unsuprevised Learning
- lec-14 WordEmbedding
- lec-15 Neighbor Embedding
- lec-16 Auto-encoder
- lec-17 Deep Generative Model
- lec-19 Transfer Learning
- lec-20 SVM
- lec-21 Structure Learning
- lec-22 Structured Linear Model
- lec-23 Structured Support Vector Machine
- lec-24 Sequence Labeling Problem
- lec-24-2 Ensemble Learning
- lec-25 RNN
- lec-26 Recursive Network
- lec-27 Spatial Transformer Layer
- lec-28 Hightway Network and Grid LSTM
- lec-29 Language Modeling by RNN
斯坦福大学 CS20SI 笔记
- TFrecord 实用技术
- Tensorboard 可视化功能深入
- Tensorboard 的使用
- Tensorflow Debug 介绍
- Tensorflow inception-v3 图像识别
- Tensorflow inception-v3 迁移学习
- Tensorflow 加载和保存深入
- Tensorflow 基本概念
- Tensorflow 基本调参技巧
- Tensorflow 实现卷积神经网络
- Tensorflow 实现递归神经网络
- Tensorflow 改装 inception-v3
- Tensorflow 模型保存与加载
- Tensorflow 简单线性回归实例
- Tensorflow 网络运行
- tensorflow 实用技巧汇编
- 学习 Tensorflow nets 模块
加州伯克利 CS189 笔记
- lec 01 Introduction.
- lec 02 Classifiers
- lec 03 Perceptron Algorithm and Hard-SVM
- lec 04 Soft-SVM and Features
- lec 05 Hierarchical of ML and Optimization Problem
- lec 06 Decision theory
- lec 07 GAUSSIAN DISCRIMINANT ANALYSIS
- lec 08 EIGENVECTORS
- lec 09 ANISOTROPIC GAUSSIANS
- lec 10 REGRESSION aka Fitting Curves to Data
- lec 11.1 WEIGHTED LEAST-SQUARES REGRESSION
- lec 12 STATISTICAL JUSTIFICATIONS FOR REGRESSION
- lec 13 RIDGE REGRESSION
- lec 14 Kernel Perceptrons
- lec 15 DECISION TREES
- lec 16 DECISION TREES (continued)
- lec 17 NEURAL NETWORKS
- lec 18 NEURONS
- lec 19 Heuristics for Avoiding Bad Local Minima
- lec 20 UNSUPERVISED LEARNING
- lec 21 The Singular Value Decomposition (SVD)
- lec 22 SPECTRAL GRAPH CLUSTERING
- lec 23 Summary
Matplotlib 学习笔记
Pandas 学习笔记总结
ScikitLearn 学习笔记总结
- 02.Scientific_Computing_Tools_in_Python
- 03.Data_Representation_for_Machine_Learning
- 100 QandA of sklearn
- Case Study - Text classification for SMS spam detection
- Case Study - Titanic Survival
- Cross-Validation and scoring methods
- Feature Selection
- In Depth - Decision Trees and Forests
- In Depth-Linear Models
- Methods - Text Feature Extraction with Bag-of-words
- Model Complexity and GridSearchCV
- Out-of-core Learning - Large scale Text Classification for sentiment Analysis
- Performance metrics and Model Evaluation
- Pipeline Estimators
- Review of scikit-learn API
- Supervised Learning Part1 – Classification
- Supervised Learning part-2: Regression
- Training and Testing Data
- Unsupervised Learning part 1 – Transformation
- Unsupervised Learning part 2 – clustering
- Unsupervised learning-Hierarchical and density-based clustering algorithms
- Unsupervised learning-anomaly detection
- Unsupervised learning-non-linear dimensionality reduction